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Purpose. The aims of this study were 1) to demonstrate a new modeling strategy that uses experimental
computational models built by the synthetic method and 2) to study the consequences of spatial
alignment, or lack thereof, of P-glycoprotein (Pgp) and CYP3A4 on the transport and metabolism of
drug-like compounds and the influence of competitive inhibition by metabolites on the transport and
metabolism of those compounds.

Methods. The synthetic method of modeling and simulation was used to construct discrete-event,
discrete-space models. Within a framework designed for experimentation, object-oriented software
components were assembled into devices representing the efflux transport and metabolism mechanisms
within cell monolayers in Caco-2 transwell systems.

Results. Conditions for transport and metabolism synergism (and lack thereof) were identified.
Simulations showed how spatial alignment altered the coordinated influences of Pgp and CYP3A4 on
absorption of a series of drug-like compounds. Within those experiments, when the metabolites were
also substrates of Pgp, the metabolite levels produced were insufficient to give evidence of a competitive
inhibitory effect on either transport or metabolism.

Conclusions. The results provide evidence of the potential value of using this class of models to improve
our understanding of how complex cellular processes influence the transport and absorption of
compounds, and the consequences of interventions.
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INTRODUCTION

By improving our understanding of how the intra- and
intercellular processes within the small intestine collectively
act to influence the transport of compounds, our ability to
make predictions more reliable and to anticipate the
consequences of interventions will also improve (1). One of
the best ways to understand how a complex system functions
is to build a functioning analog of that system that exhibits
some of the phenomena of interest. Many in vitro and in situ
models used to study drug metabolism are intended to do
that. The traditional approach is to study and experiment on
such models and then, aided by induction, hypothesize
mechanistic explanations that can adequately account for
the patterns observed in collected transport and absorption
data. The more useful and predictive explanations have
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typically been based on sets of differential equations. The
equations provide abstract descriptions of the behavior of the
hypothesized mechanisms under the conditions specified.
Examples are discussed by Grass (2).

We present a computational approach that can augment
the traditional approach. In silico components, built using
object-oriented programming, are used to construct and
synthesize working devices that implement the hypothesized
mechanisms. The independent components can be made to
represent biological counterparts at a level of detail appro-
priate for the available knowledge and data. Our longer-term
goal is to build synthetic, in silico models of the intestine and
connected tissues that are suitable for studying the mecha-
nisms, conditions, and interventions hypothesized to influ-
ence drug absorption. Toward that end, we recently described
synthetic models that mimic aspects of confluent Caco-2 cells
growing in a transwell system (3). The models are transpar-
ent and intuitive. The researcher can directly witness how the
components interact with each other to generate behaviors.
This transparency emphasizes the mapping between the
model components and their in vitro counterparts. We
reported results of experiments that verified the key model
design features, including the ability to reliably represent
passive paracellular and transcellular transport, carrier-
mediated transport, and active efflux transport for simulated
compounds having a wide range of physicochemical prop-
erties. Simulated transcellular transport results matched
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in vitro transport data for alfentanil at several pH values.
Digoxin is subject to efflux transport mediated by P-
glycoprotein (Pgp) as well as passive transport. We also
matched the data for digoxin transport. Those simulated
results are presented in Figs. 6 and 10 of Liu and Hunt (3).
We have used the same type of devices for the studies
described herein. They are intended to function as in silico
analogs of transwell systems containing a layer of epithelial
cells; hereafter we refer to such a device as an in silico
transwell system (ISTS).

We use ISTSs to study how the mechanisms of transport,
efflux, and metabolism interact through common substrates
to influence the transport and metabolism of drug-like
compounds. We identify system specifications that give rise
to efflux—metabolism synergy and those that do not. We show
that ISTSs can be used to test hypotheses about how the
interplay between an efflux transporter, such as Pgp, and a
phase I metabolic enzyme, such as CYP3A4, is believed to
influence the intestinal absorption of drug-like compounds
(4).

It has been proposed that Pgp and CYP3A4 might act as
a coordinated molecular barrier to drug intestinal absorption
because of the significant overlap of their substrate specific-
ities (5). The fact that they colocalize near the apical side of
enterocytes and can be co-induced and co-inhibited by many
compounds (6), has led some to suggest that Pgp and
CYP3A4 synergy helps reduce the absorption of dual-
substrate compounds (7,8). The increase in absorption caused
by inhibition of both Pgp and CYP3A4 is taken as evidence
of that synergism, i.e., of cooperative action such that the
total effect is greater than the sum of the two effects taken
independently.

Because it is inherently difficult to represent spatially
localized phenomena in an equation-based model, no tradi-
tional models have been proposed to study the consequences
of Pgp and CYP3A4 being spatially aligned. However, Ito
et al. (9), using a compartment pharmacokinetic model, have
shown that the fraction absorbed is synergistically elevated
by simultaneous inhibition of both Pgp and CYP3A4. If one
could control the relative intracellular location of Pgp and
CYP3A4 within Caco-2 or the other cell lines, then it would
be possible to measure the importance of spatial alignment in
wetlab experiments, but such technology is not available.
Computationally, it is easy to control the location of counter-
parts of Pgp and CYP3A4 within an ISTS and thereby
examine the consequences of their spatial alignment. We
speculated that alignment may be just one of several factors
interacting to influence synergy. It seemed clear that spatial
alignment of Pgp and CYP3A4 would cause synergy for a
dual-substrate compound. The degree of synergism when Pgp
and CYP3A4 locations are uncorrelated under the same
conditions was, however, unclear, and so merited study. We
hypothesized that when locations are uncorrelated, the
contribution of Pgp—CYP3A4 synergism to the transport
properties of dual-substrate compounds would be influenced
by the density of Pgp and CYP3A4, as well as by the relative,
Pgp—compound and CYP3A4-compound affinities.

It has been proposed that Pgp can also enhance
intestinal drug metabolism by facilitating the removal of
metabolites, thereby preventing competitive inhibition of the
enzyme by its metabolite (10). However, there are two

Liu and Hunt

reasons why Pgp-mediated efflux cannot be generalized to
all CYP3A4 metabolites. Some metabolites do not show
selective efflux to the apical side of epithelial monolayers,
and some of the preferential apical distribution that has been
observed is not changed by Pgp’s inhibition (11,12). Consider
the case where metabolites of CYP3A4 are also Pgp’s
substrates and they can interact with CYP3A4, thus inhibit-
ing drug access. If drug efflux is being competitively blocked
by the already existing metabolites, will there be altered
metabolism of the parent drug? To date, it has been difficult
to address such questions in wetlab experiments, in part
because the available compounds (and their metabolites)
often do not have the required combination of properties.
With the technology described herein, we can directly address
such questions in silico. To do so, two sets of identical in silico
compounds were created: all the metabolites of the first set
are substrates for the simulated Pgp, whereas none of the
metabolites in the second set are substrates. The expectation
was that if the competitive inhibitory effect on either efflux
or metabolism is significant under the conditions of our
experiments, then there would be evident differences in the
overall transport properties of the two sets.

The results of our in silico experiments verify that ISTSs
do generate transport and metabolism behaviors similar to
those observed in the experiments using the in vitro
CYP3A4-transfected Caco-2 transwell system for single-
and dual-substrate compounds. The separate and combined
simulated influences of Pgp and CYP3A4 on the in silico
transport of 17 virtual compounds have been systematically
documented. We have used that data to explore two mech-
anistic questions and tested the related hypotheses. Correlat-
ed spatial alignment had a unique effect on the coordinated
influences of simulated Pgp and CYP3A4 on simulated
absorption. However, there was no evidence of a competitive
inhibitory effect on either transport or metabolism from the
simulated metabolites that were substrates of simulated Pgp.
Taken together, the results provide convincing support for
the potential value of further developing and using synthetic
models to improve our understanding of how the complexity
of cellular processes influences absorption. Further experi-
mentation with ISTSs, including identifying parameteriza-
tions such that in silico results reasonably match in vitro data,
are expected to provide improved insights and specifically
suggest targeted experiments to challenge those insights.

METHODS
Model Structure, Design, and Assumptions

The structure of the ISTS is illustrated in Fig. 1 and
detailed by Liu and Hunt (3). It mimics essential features of a
CYP3A4-transfected Caco-2 cell monolayer in a cell culture
transwell system (13). The ISTS represents an arbitrary-
width, vertical-column section through the entire transwell
system. This section is sliced virtually into five stacked
segments. Each segment is represented by a discrete 2D
space (e.g., a 100 x 100 grid). The topology of each grid is a
low-resolution, abstract representation of a referent segment.
This reduction in accuracy limits the precision of the
simulated behaviors. However, the interaction questions that
are being investigated do not require a high resolution. An
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Fig. 1. In vitro and in silico experimental system to study intestinal
drug transport and metabolism. CYP3A4-transfected Caco-2 in vitro
transwell system: A, apical, B, basolateral compartment; C, epithelial
cell monolayer; F, filter; V, a vertical column section through the
transwell system. In silico transwell system (ISTS): G1-GS5, 2D grid
spaces representing the indicated components of the transwell
system. The different shading of the G3 grid locations illustrates
that locations in any of the five spaces can have different properties
(see the text for additional detail).

attractive feature of the presented synthetic modeling strategy
is that the resolution of these topological representations can
be easily increased when the problem being addressed
requires doing so and there are sufficient experimental data
to support the new representation.

The components of interest within the five spaces
compounds, cells, enzymes, metabolites, etc. are represented
as objects. All processes are represented by a set of discrete
event-driven behavioral causality relations. Each process in
the ISTS represents a known or hypothesized biological
mechanism. Discrete time steps are used to represent
continuous time. When used within an appropriate simula-
tion framework, the resulting software devices can operate in
ways that represent the hypothesized biological mechanisms
within epithelial monolayers. We therefore refer to them as
being biomimetic. The resulting devices are examples of a
class of object-oriented, hierarchical, modular simulation
models that are being developed within other scientific and
technical domains (14,15). Several distinctions are provided
in the Discussion section between this class of models and
traditional equation-based models.

Grid dimensions and the width and depth of the vertical
column in Fig. 1 all control the system resolution. New spaces
can be added by plugging in new grids. That can be done
without interfering with the function of the existing spaces or
having to reengineer the ISTS because the discrete-event
architecture provides a common interface independent of the
components’ internal spatial or temporal structure. G1
represents a portion of the apical lumen compartment and
the fluid in the transwell insert. G2 represents the apical
membranes of the cell monolayer and the junctions between
cells viewed from the apical side. G3 represents the
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intracellular spaces. G4 represents the basolateral mem-
branes and the junctions between cells viewed from the
basolateral side. Within G2 and G4, a parameter controls the
prevalence of simulated tight junctions between cells. A
percentage of grid points in each of these two spaces are chosen
randomly to represent junctions; the remaining grid space
represents cell membranes. G5 represents a portion of the
basolateral compartment and the fluid in the cell culture well.

Differently parameterized ISTSs are used and measured
during in silico experiments in the same way as a Caco-2
monolayer within an in vitro transwell system. The ISTS
framework is built of modular components using the Java
layer of the Swarm platform (16). Within the computational
framework, we have an agent, the “Experiment Agent,” to
manage experiments. It is the in silico counterpart to the
researcher conducting wetlab experiments. When needed, a
“Data Model” can be used to hold data from in vitro
experiments. A “Reference Model” can be one of the
existing mathematical models [e.g., a pharmacokinetic model
in Ito et al. (9)] that are used to represent drug transport
through cell monolayers or the small intestine. The
“Experiment Agent” reads inputs from the “Parameter
Manager” and transfers that information to the ISTS.
Simulation results are collected in the “Data Management
Module” for statistical processing.

We chose the Swarm-like tools, which include RePast
(http://repast.sourceforge.net/) and JAS http:/jaslibrary.
sourceforge.net/), because they facilitate hybrid paradigm
modeling. We chose Swarm over Mason (http:/cs.gmu.edu/
~eclab/projects/mason/) early in the project because Swarm
has greater extensibility and flexibility. The ISTSs can be
ported to the simpler and more constraining Mason frame-
work with minimal effort and without loss of model
expressiveness. Swarm-like tools are minimally formal and
allow one to use pure discrete event or hybrids of discrete
event and other techniques like discrete time, process
simulation, etc. Swarm, being implemented in layers, is easy
to integrate with other technologies at the low level. Using
the Java layer to Swarm also provides access to the many
Java application programming interfaces (APIs). This makes
it extensible to a wide array of other tools.

System Components

To avoid confusion and clearly distinguish in vitro
components and features from corresponding in silico
components and features, such as a “cell,” a “drug,” or
“metabolism,” we use SMALL CAPS when referring to the in
silico system. A mobile object called DRUG represents actual
drug molecules. Seventeen different DRUGs were used; their
properties are listed in Table I. With the exception of XVII,
each DRUG is a simulated weak base with degree of ionization
(pK,) = 6.5, molecular weight (MW) = 150 Da, and lipo-
philicity (log P) = 2.0. XVII has pK, = 6.5, MW = 300 Da,
and log P = 1.8. A typical drug represents more than one
molecule and can move within and among spaces. Movement
of a free drug to an adjacent, less crowded location within a
grid is governed by a biased random walk (3). Its traverse
from one space to another is governed by its location, its
assigned physicochemical properties (we consider only log P,
pK., and MW), and environmental conditions, including the



496

Table I. Binding Affinities of cyp and pGp for the Hypothetical

Drugs
Drua ID cypSolute Affinity” pgpSolute Affinity”

I 0 0

11 0 0.5
I 0 0.75
v 0 1.0
v 0.5 0
VI 0.5 0.5
VI 0.5 0.75
VI 0.5 1.0
IX 0.75 0

X 0.75 0.5
XI 0.75 0.75
X1I 0.75 1.0
X111 1.0 0
X1v 1.0 0.5
XV 1.0 0.75
XVI 1.0 1.0
XvIr 0.5 0.5

“Binding is a probabilistic event; if the affinity value is high, e.g.,
0.75, then when substrate is next to the active site, there is a 75%
chance (on average) that it will be bound at the next time step.

5 XVII has MW of 300 Da and log P of 1.8; all other drugs have MW
of 150 Da and log P of 2.0.

concentration gradient, pH, etc. MW is used to determine the
in silico diffusion coefficient (Disrs): Disrs < 1/(MW)". We
assume 7 = 1 in the BILAYER (G2 and G4) and 0.6 elsewhere

D near
active site
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(17,18). Entering the BILAYER from an aqueous space is
controlled by an event probability that is influenced by the
above factors. The probability of exiting that space at the
next time step is arbitrarily set to 0.5.

Membrane transporters and metabolic enzymes are
modeled as immobile objects. Objects called PGP represent
Pgp. Objects called cyp represent CYP3A4, the only
metabolic enzyme considered in this study. Both PGP and
CYP can be assigned randomly or to specific locations within
the G2 and G3 spaces, respectively. A random assignment
implements the assumption that there is no spatial correla-
tion between the membrane location of PGP and the
corresponding intracellular location of Cyp within that same
cell. Each can only interact with a drug located at its active
site. In this report, the number of PGP and CYP were specified
separately in advance. Alternatively, as was done in our
previous work (3), the number of each may be drawn
separately at random from a specified distribution.

PGP is only parameterized to transport DRUG out of the
simulated cell interior to G1. Because there may be several
transporters within the area of cell membrane represented by
one G2 location, each PGP may represent more than one
transporter. Both PGP and CYP have a free state and three
occupied states, as diagrammed in Fig. 2. If a DRUG is located
adjacently to the active site of a free PGP or CYP, binding
can occur with a probability that depends on the value of
their solute affinity parameters (“pgpSoluteAffinity” and
“pgpSoluteAffinity” in Table I). Those parameter values,
together with the reactivity of the complexes, are conflated

Efflux Transport APICAL (GT) ‘

A g PG

AN
‘ : INTRACELLULAR (G3) "

D released from
G2 (P3
), P, enters G1;
P-door closed

M Released
FromC

Fig. 2. Flowchart describing the ISTS efflux transport and METABOLISM processes. D, a DRUG object;
P, a PGP object; C, a CYP object. The algorithm is designed according to the schematics in the insets. Insets:
gray objects represent DRUG; white objects represent METABOLITE; notched and open white boxes,
different PGP states; notched and diamond-shaped gray boxes, different Cyp states. Binding between P or
C, and D is probabilistic and is controlled by the simulation parameters pgpSoluteAffinity and

cypSolute Affinity, respectively.
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in silico into the probability of DRUG binding. A larger
parameter value corresponds to a smaller value of K, in
Michaelis-Menten models (3). An occupied PGP holds its
DRUG for three time steps, arbitrarily chosen to correspond to
the illustrated state changes in Fig. 2, and then releases it into
the simulated apical space, G1. In simulations of intracellular
metabolism, three time steps after a DRUG is bound to CYP, its
METABOLITE is placed in a location adjacent to the now free
cyp. Thereafter, the METABOLITE randomly moves within and
among spaces, exactly as would its parent. For simplicity,
METABOLITES are given the same physicochemical properties
as their parents. However, when it is required, it is easy to
change parameters to individualize METABOLITE properties.
For example, in one experiment the METABOLITE can have
the same PGP and cyp affinity values as the parent. In
another, those values can be set to zero. Additional objects
representing networks that control the level of expression of
enzymes and transporters (or other cellular components such
as other transporters, lysosomes, and genes) can be specified
and added when needed. When we increase the resolution
under the same conditions, the number of pGp, Cyp, and
DRUG objects will typically increase, although their relative
numbers will stay the same.

For each stochastic event, a random number is drawn
from a standard uniform distribution and compared with a
prespecified or calculated event probability. Events occur
only when the random number is less than or equal to the
parameterized event probability.

In Silico Experiments and Data Analysis

All of the experiments use and build on the method
detailed in our previous work (3). In all experiments, the pH
in G1, G3, and G5 is equal to 7.4. At the start of a simulation,
2000 DRUG objects are assigned to random locations in the
donor space. Larger doses can be used (3), but were not
needed for the experiments described herein. Because of the
stochastic nature of events within the same simulation,
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repeated measurements of a behavior of interest will differ
between experiments (between model runs). However, for
repeat Monte Carlo simulations (e.g., 50), the behaviors
discussed herein have reasonably normal distributions. Con-
sequently, we decided that mean results from ten trials would
be adequate to represent a simulated behavior.

In Table II, the ISTS parameters are grouped into three
categories: 1) the simulated transwell system, 2) the physico-
chemical and biochemical properties assigned to DRUGS, and
3) the in silico experimental conditions. An ISTS is designed
to study and document DRUG transport from either direction.
When Gl is designated as the donor compartment, apical-to-
basolateral (A — B) transport is simulated. When G5 is
designated as the donor compartment, B — A transport is
simulated. Experiments are run for a certain period under a
sink condition; for example, for studies in which only initial
flux rates were measured, the period is when no more than
10% of the dose has transported from the donor to the
receiver space. The initial flux rates are calculated by
dividing the amount of DRUGs in the receiving space by
elapsed time steps, dQ/ds. The in silico apparent permeation
coefficient is Pisrs = (dQ/ds)/(acy), where a is the area of the
first membrane space contacted (G2 or G4), and ¢, is the
initial dose of DRUGs. Extraction ratio (ER), which is a
measure of the extent of metabolism relative to the amount
of transported drugs, is calculated as in Cummins et al. (19):

ER = ZMETABOLITESM/ arids/ (Z METABOLITES it grids

+ Z Parentst,3,4&5)

PGP and cyP interact only with DRUGS or METABOLITES
that they recognize as being substrates. Each DRUG or
METABOLITE carries a label that designates it as a substrate
or not. To inhibit the interaction of PGP or Ccyp with a
substrate, that label recognition is blocked for the duration of
the study; the result is complete inhibition. By changing 1)

Table II. Parameters” of the ISTS

Category Name Description Values

In silico transwell system worldXSize The X x Y dimension of G1-G5 100 x 100°
worldYSize
tightJunctions Tight junction area as percent 0.1

MEMBRANE space area

minPgps Minimum PGP density 10
maxPgps Maximum PGP density 50
minCyps Minimum CYP density 20
maxCyps Maximum CYP density 50

DRUG properties ionDiffusion Permeation due to ionized form of DRUG (%) 0-1
substrateOfPgp DRUG is a substrate of PGP or not TorF
pgpSoluteAffinity DRUG-PGP binding affinity 0-1.0
substrateOfCyp DRUG is a substrate of CYP or not TorF
cypSolute Affinity DRUG-CYP binding affinity 0-1.0

Experiment conditions numSolutes Initial concentration in donor compartment 2000
a2bDirection Donor is G1 (otherwise, G5) TorF

“The ISTS contains additional parameters (3) that were not adjusted during the experiments discussed herein or in related exploratory
experiments. Examples include parameters to adjust molecular weight, pK,, logarithm of the (DRUG'S) partition coefficient, pH in G1, G3,

and G5.

b This grid size was adequate for the needs of this study; it can be changed easily, thereby altering system resolution.
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Fig. 3. Effect of PGP on flux rates and simulated intracellular DRUG
levels for I, IT, and ITL. (A) Simulated transepithelial flux rate of I, II,
and III under a sink condition; A — B transport measures serve as
controls. (B) Dark gray bars, simulated intracellular DRUG levels at
time step 400 following dosing into G1; light gray bars, simulated
intracellular DRUG levels at time step 400 following dosing into GS5;
the data from I (not PGP substrate) served as controls. *p < 0.05,
difference between experimental and control groups is significant;
**p < 0.01, difference between experimental and control groups is
highly significant. The Welch modified two-sample ¢ test was used.
Data are the mean of ten Monte Carlo simulations; error bars, + SD.

pGP and CYP densities, 2) their binding affinities for the DRUG
(and METABOLITE) under study, and 3) each DRUG’s corre-
sponding physicochemical properties, we are able to study
the combined influences of efflux and METABOLISM for a
variety of simulated compounds.

RESULTS
The Influence of PGp and CyP on Single-Substrate DRUGS

The passive transport behaviors of DRUG I have been
described in detail (3); I served as the control in this study.
To study the influence of PGP alone, we made two virtual
analogs—II and III—that are exclusive substrates of pGp,
having pgpSolute Affinity values of 0.5 and 0.75, respectively.
The ISTS contained 10 or 30 PGPs in G2. Because I is
not a PGP substrate, it did not exhibit any significant
difference between A — B and B — A transport. For II and
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III, their B — A transport always exceeded that of A —
B because of the added influence of unidirectional efflux
driven by PGP (Fig. 3A). The magnitude of the effect
increased as both PGP-DRUG affinity and pGp density in G2
increased. At time step 400, the highest intracellular DRUG
levels were observed for I and were indistinguishable for
both transport directions (Fig. 3B). When efflux was
involved, the intracellular levels decreased for both transport
directions, indicating the pivotal role of active efflux in
maintaining lower intracellular levels of substrates.

To study the influence of Ccyp alone, two new analogs of
I were created. As listed in Table I, V and IX have
cypSolute Affinity values of 0.5 and 0.75, respectively, but
no PGP affinity. The A — B transport simulations were
conducted in an ISTS limited to only 20 or 50 cyps in G3 and
were run for 400 time steps. I, which was not recognized by
Ccyp, exhibited more transport and had the highest intracel-
lular DRUG levels. As CYP-DRUG affinity and the number of
CYP increased, fewer drugs were transported to G5, and a
significant decrease in intracellular DRUG levels was observed
(Fig. 4A). ER values increased as CYP-DRUG affinity and/or
the number of CYPs increased, because of increase in METAB-
OLISM and decrease in transport to the G3 and receiver spaces
(Fig. 4B). Together the data show, as expected, that metab-
olism reduced DRUG transport and intracellular DRUG levels.
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Fig. 4. Effect of cYP on simulated A — B transepithelial transport
and the extent of METABOLISM for I, V, and IX. (A) Amounts of
DRUG found in simulated cells and transported to the simulated
basolateral compartment (G5) were measured at time step 400. The
data from I (not CYP substrate) served as controls. (B) Simulated
cyp-mediated metabolism, as measured by the formation of METAB-
oLITEs and the calculated ER. Sample size, *, and ** as in Fig. 3.
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step 1000; because of the physicochemical properties of XVII, a longer study period was required to get amounts
similar to those for VI). (A, C) Each line is composed of mean measurements taken at each time step. Symbols are
added to differentiate the six curves. Open symbols, A — B transport; closed symbols, B — A transport; squares,
controls (no inhibition of either PGP or CYP); triangles, complete inhibition of PGP; circles, complete inhibition of
PGP and CYP. (B, D) Gray bars, simulated cellular drug levels; open bars, G5 (simulated basolateral) DRUG levels;

dark bars, total METABOLITES in all spaces. Sample size, *, and ** as in Fig. 3.

The Influence of PGp and CyP on Dual-Substrate DRUGS

To study the combined influence of PGP and CYP on
transport behavior, we used VI, VIII, XIV, and XVII. Each is
a dual substrate having the properties listed in Table 1. Each
ISTS contained 20 cyps and 30 pGps. To isolate the
consequences of PGP and Cyp inhibition, A — B and B —
A control studies were conducted for all four drugs. Protocols
were repeated to study three different treatments: complete
inhibition of PGP, complete inhibition of cyp, and complete
inhibition of both. All other factors and parameter values
were kept constant.

VI and XVII have identical PGP and cyp affinities, but
different physicochemical properties. Net B — A transport
exceeded A — B transport for both DRUGS, but as seen in
Fig. 5A and C, the difference is more apparent for XVII
because of its physicochemical properties. This polarized
transport was completely abolished by inhibition of pGP: the
result was decrease in B — A and increase in A — B
transport relative to the control values. When PGP and CYP
were both inhibited, A — B transport increased even further
due to the additional effect of blocked METABOLISM. The
simulated intracellular and basolateral levels of the two
DRUGS at time step 400 (for VI) or 1,000 (for XVII) were
significantly increased relative to the control values (Fig. 5B
and D). Because of the increase in G3 DRUG levels caused by

PGP inhibition, the levels of total METABOLITEs also increased.
The G3 levels, but not the G5 levels of the two DRUGS, were
affected by cyp inhibition.

Table III lists the efflux ratios for VI and XVII along
with corresponding values for VIII and XIV. The data show
how much ER values changed due to PGP inhibition.
Compared to VI, XVII had a larger efflux ratio because of
its physicochemical properties. VIII had a larger efflux ratio
due to its stronger interaction with PGP. Inhibition of PGP
decreased the ER of all four brRUGs. XVII had the largest
decrease (14.3%) and VI had the smallest (3.5%). XIV had a

Table III. Comparison of the Efflux Ratios (ERs)” and the Influence
of Inhibition of PGP on the Extent of Metabolism for Four
Hypothetical DRUGS

ER (SD)”
ER
Drug B —> A/A— B  DRUG alone Inhibit pGp A (%)
VI 1.423 0.170 (0.017)  0.164 (0.015) 35
XVII 2.584 0.454 (0.028)  0.389 (0.026) 14.3
VI 1.602 0.179 (0.014)  0.164 (0.015) 84
X1V 1.446 0.242 (0.030) 0.216 (0.025) 11.0

“Measured under a sink condition.
®Data are shown as mean (SD) from ten Monte Carlo simulations.
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Table IV. The Combined Influences of cyp and PGP on the Simulated Absorption (A — B Transport) of DRUGS VI and XI

ISTS (20 cyes, 30 PGPs)

ISTS (50 cyps, 50 PGPs)

Absorption (%)* A (%)° Absorption (%) A (%)

Control (VI at 800) 8.23 6.24

Inhibit PGP 9.99 1.76 8.16 1.92
Inhibit cyp 9.66 1.43 8.36 2.12
Expected (E) upon inhibition of both® 11.42 3.19 10.28 4.04
Observed (O) upon inhibition of both 11.30 3.07 11.30 5.06
Synergism: O/E (VI at 800) 0.99 0.96 1.10 1.25
Synergism: O/E (XI at 800)¢ 1.04 1.15 121 1.53
Synergism: O/E (XI at 400)¢ 0.96 0.83 1.03 1.09

“Percent ABSORBED (in G5 at time step 800, for VI and XI, and at time step 400 for XI); data are shown as mean from ten Monte Carlo

simulations.
b Additional aBsorpTION relative to control values.
¢ Assuming effects are additive.
 Calculated as for VL

greater affinity for cyp than did VI, and yet they had the
same PGP-DRUG affinity and physicochemical properties.
Consequently, they had a similar efflux ratio. However,
inhibition of pGp decreased the ER of XIV (11%) more than
it did the ER of VI (3.5%). These changes may seem small.
Note, however, that three of the compounps (VI, VIII, and
XIV) have the same pK,, MW, and log P. In addition, three
of the PGP affinity values are the same (0.5). The percent
change can be made larger by using COMPOUNDs where the
pKa, MW, and log P values are different, and by making the
relative PGP affinity values span an order of magnitude or
more.

Synergism may occur between PGP and CYP in retarding
the absorption of the dual-substrate DRUGs studied. Syner-
gism is confirmed when the additional amount ABSORBED
when both PGP and cYP are inhibited, relative to control
values (no inhibition), is greater than the sum of additional
amounts ABSORBED after separately inhibiting PGP and CYP.
We made such measurements for several of the experiments
described above after 400 and 800 time steps. In most cases,
when the numbers of PGP and CcyP were low (e.g., 30 and 20
each or less) there was no evidence of synergism with a short
absorption interval. For larger densities of PGP and CYP (e.g.,
50 each) and longer study intervals, clear evidence of
synergism was obtained for the dual substrates in Table I.
Results for VI and XI are shown in Table IV. At the current
low resolution, the measures of synergism are not dramatic.
However, the data suggest that as the number of PGP and CcYP
are increased, the synergism measure will increase for the
same overall experimental conditions. Such an increase can
be accomplished simply by increasing the spatial resolution.
When that is done, each PGP and CYP represents fewer
proteins.

Studies of PGp and Cyp Relative Location

To test our first hypothesis, we constructed two different
groups of ISTSs, one control, and the other experimental. We
used each to conduct experiments on I-XVI. We specified
that each ISTS contain 50 pGps and 50 cyps. In the control
ISTSs, the pGps and Ccyps were randomly assigned to locations

within their corresponding spaces, G2 and G3, respectively,
so that there was no correlation between their relative
locations. For the experimental ISTSs, the PGPs (or CYPs)
were first randomly assigned to locations in their space, and
their grid coordinates were recorded. Next, the cyps (or
PGPs) were placed at matching coordinates within their space.
Viewed from G1 each PGP is “above” a CYP.

The influences of the relative positioning of PGP and CYP
on measured flux rates and ER values are shown in Figs. 6
and 7, respectively. The data are grouped by CYP-DRUG
affinity value, and within each set there are mean data for
four different pGP-DRUG affinity values. For the dual sub-
strates, matched PGP-CYP positioning had no significant effect
on B — A flux rates, but it did have a modest but significant
effect on A — B flux rates (Fig. 6). For the PGP substrates the
B — A flux rates were clearly larger than those for A — B,

0.40 PGP-affinity

10 0 05 075 10 O 10
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Flux Rate

0.20
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0 v

m v v \'I’] VI VI er X X1 XX xiv )&\-" XVI
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Fig. 6. The influence of the relative positioning of PGP and CYP on
flux rates of I-XVI. Each set of experiments used the same ISTS (50
PGP, 50 cyp). Experiments are clustered into four groups based on
CYP-DRUG affinity. Within each group, the inserted scale shows
PGP-DRUG affinity. Open circles, mean of control experiments (the
locations of PGP and cYP within G2 and G3, respectively, are
uncorrelated); closed squares, mean of experimental group (the
locations of PGP and cyp within G2 and G3 are matched); dashed
line, A — B transport; solid line, B — A transport. Sample size, *,
and ** as in Fig. 3.
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Fig. 7. The influence of the relative positioning of PGP and CYP on

ER of I-XVI. The representations and details are the same as in

Fig. 6.

and the magnitude of the difference increased with increasing
PGP-DRUG affinity. For the dual substrates, there was a clear
influence of PGP-CYP relative positioning on measured ER
values (Fig. 7) for each of the A — B experiments. That
influence was less dramatic for the B — A experiments. In
fact, for X, XIV and XV, differences between experimental
and control B — A experiments were not statistically
significant. With increasing PGP-DRUG affinity, ER decreased
in B — A transport for both control and experimental
groups. ER values for A — B transport were different. ER
increased within the control group, but decreased within the
experimental group. In other words, for dual-substrate DRUGs
in an ISTS where the locations of PGP and CYP are spatially
aligned, inhibition of PGP increased ER for both B — A and
A — B transport. It is noteworthy that no in vitro experi-
ments have reported such a phenomenon.

Studies of Competitive Inhibition by METABOLITES

To test our second hypothesis, we conducted two sets of
experiments. Both used I-XVI and ISTSs having indepen-
dent, random placement of PGP and cyp. Within each set,
each metabolite was assumed to have the same CYP affinity as
its parent. For the first set of experiments, METABOLITE
affinity for PGP was identical to that of its parent. For the
second set of experiments PGP-METABOLITE affinity was zero.
For A - B and B — A simulations, we compared the
consequences of the two mechanisms on initial flux rate
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measures and ER values. We used analysis of variance
(ANOVA) to test if there was a statistically significant
difference between the two mechanisms. If so, it would
indicate that within the first set of experiments, there was
evidence of competitive inhibition being a significant factor.

Tables V and VI display the results of the ANOVA
analysis. The differences between DRUGs are sufficient to
account for all of the variance in initial flux rates and ER
values for both A — B and B — A transport (p values for the
DRUG term 0). There was no statistically significant evidence
for a contribution from either of the two mechanisms. Nor
was there any significant evidence for a contribution from the
interaction term (a specific combination between DRUG and
one of the mechanisms). For the conditions studied, there
was no experimental evidence of interference through any
form of competitive inhibition by METABOLITEs with the
transport behaviors of the parent drug. To obtain evidence of
competitive inhibition by METABOLITEsS, more extreme con-
ditions and properties will be required.

DISCUSSION

Most of the models used in pharmaceutical research fall
into three broad categories: constructed synthetic wetlab
models, induced equation-based models, and statistical
models. Here we are concerned with the first two. In vitro
wetlab models are the mainstays of biomedical research.
They are synthetic models where some of the building blocks
are laboratory items and others are living parts. The Caco-2
transwell system is an example. Equation-based models are
typically arrived at using the inductive method of modeling
(20). They are usually built by analyzing data, creating a
mapping between the envisioned structure of the system and
components of the data, and then representing those data
components with mathematical equations. These equations
are then executed and validated against the data. Validation
often involves fitting the equations to the data. Examples
include simple Michaelis—Menten models, oral drug absorp-
tion models (2), and physiologically based toxicokinetic
models (21). This modeling method stays very close to the
data and, when successful, provides models that extrapolate
beyond the original data, making them usable for prediction.
However, the detail that is abstracted away when an equation
is induced is where much of the heuristic value lies. That
detail describes the mechanism by which the data were
generated, whereas the mathematics only describes the
abstracted properties of the mechanisms that are reflected

Table V. ANOVA Table for Testing the Competitive Inhibitory Effect of METABOLITES on the DRUG Flux Rate (Sink Conditions)

A—-B B—-A
Sum of Sum of
df squares Mean square  F value  Pr (F) df squares Mean square  F value  Pr (F)
Hypothetical DRUGS 15 045 0.030 23828 0 15 1.07 0.071 243.62 0
Mechanism 1 5.90E-05 5.90E—05 0.47 0.49 1 6.28E—06 6.28E—06 0.021 0.88
Two terms 15  9.44E-04 6.29E—05 0.50 0.94 15 0.0013 8.61E—05 0.29 0.99
interaction
Residuals 288  0.036 1.26E—04 288  0.084 2.92E—04

The ANOVA model is flux rate = DRUG + mechanism + (DRUG x mechanism) + residual.
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Table VI. ANOVA Table for Testing the Competitive Inhibitory Effect of METABOLITES on the DRUG ER (Sink Conditions)
A—B B—- A
Sum of Sum of

df squares Mean square  Fvalue  Pr (F) df squares Mean square  F value  Pr (F)
Hypothetical DRUGS 15 1257 0.84 1332.6 0 15 7.09 0.47 924.91 0
Mechanism 1 247E-04 2.47E—04 0.39 0.53 1 3.07E—04 3.07E—04 0.60 0.44
Two terms interaction 15 0.0068 4.55E—04 0.72 0.76 15 0.0096 6.39E—04 1.25 0.23
Residuals 288 0.18 6.29E—04 288 0.15 5.11E—04

The ANOVA model is ER = DRUG + mechanism + (DRUG x mechanism) + residual.

in the data. To address questions about those details and how
they influence system behavior, we need to have a model that
can include more detail, an analog of hypothesized or
plausible mechanisms. To do that in silico, we need to follow
the synthetic modeling method (20).

There is a huge gap between experimental wetlab
models and traditional computational models. The gap sits
on the continuum between experiment and theory. To
develop exploitable insight into the functioning of complex
biological systems we need to begin bridging this gap. To do
that, we will need new methods that considerably extend
those described by Noble (22) and Kitano (23). From these
new methods will come new classes of models that make
computational biology more experimental and wetlab re-
search more computational. The ISTSs described herein are
examples of a new modeling strategy to help narrow that gap.
They are discrete event, discrete space, continuous time
models (14,15) in which object-oriented software components
are plugged together and operated in ways that represent the
hypothesized mechanisms within the wetlab systems, includ-
ing the ability to handle the interaction of components at
variant spatial and temporal resolution. The discrete event
paradigm is necessary to handle complex composition re-
quirements where components of different spatial or tempo-
ral resolutions must be integrated. Although some of the
dynamics of the ISTSs were adequately implemented using a
fixed time step, a true discrete event framework is necessary
to realize the compositional flexibility required for more
accurate synthetic models. The results presented above show
that ISTSs can be used to experimentally explore mechanistic
questions and hypotheses involving the overlapping substrate
specificities of CYP3A4 and Pgp. Such issues can be a chal-
lenge to address using the available in vitro models, and
difficult to untangle from data using traditional equation-
based models.

In order for such software to be fully compositional in
the same flexible way as the wetlab systems, they must be
fully capable of asynchronous discrete event dynamics. For
that, the simpler discrete time models are not sufficient
because the various components being composed, represent-
ing several aspects of cellular dynamics, typically have many
different spatial and temporal resolutions. For that end,
interactions between components should occur only when
necessary and avoid relying on a global clock.

For compounds that are dual substrates of CYP3A4 and
Pgp, in vitro experiments have shown that pretreatment with
Pgp inhibitors results in a reduction in ER values (24,25).
The explanations have focused on intracellular drug levels.

For example, absent Pgp inhibition, efflux of drug followed
by reabsorption effectively prolongs the intracellular access
of drug to the metabolizing enzymes. Pgp inhibition then
blocks that prolonged access causing reduced ER values. We
tested that idea and others by exploring PGP-DRUG-CYP
interactions in detail. The simulated results were similar to
those observed in vitro (25-28). We measured the transport
of dual substrates while inhibiting PGp. Relative to control
values, total METABOLITES increased, as did the levels of DRUGS
in CELLs and in the receiver (G5). ER values decreased
because the G3 and G5 DRUG levels increased more relative to
those of total METABOLITES. For example, in Fig. 5D, by
inhibiting PGP, the sum of the G2, G3, G4, and G5 levels
of XVII increased from 109.9 to 158.4 (a 44% increase); the
total amount of metabolites went from 39.7 to 48.7 (a 23%
increase). Consequently, ER values decreased 12%, from
0.266 to 0.235. In the absence of PGP inhibition, the lower
G3 DRUG level caused fewer METABOLITES to be formed.
However, because the net amount of DRUG transported into
CELLs and to the receiver was even lower, the calculated ER
seemed large. Inhibiting PGP decreased the ratio of total
METABOLITEs to the amount of transported DRUG, thus de-
creasing ER. Exploratory ISTS simulation helps bring clarity
to such relationships.

We used ISTSs to explore the consequences of aligning,
or not, the spatial locations of PGP and CYP within their
respective spaces relative to the direction of transport. The in
vitro experimental results are consistent with an unaligned,
uncorrelated spatial arrangement, not with spatial alignment.
In the in silico A — B experiments that used dual substrates,
METABOLISM and efflux decreased the probability that a
DRUG would arrive in the receiver space within some interval.
When PGP and cyp were aligned in their respective X-Y
planes, interaction with one effectively impeded interaction
with the other. Consequently, their combined barrier effect
was decreased relative to what it would have been with any
other spatial arrangement. When a DRUG was pumped out of
the CELL to Gl, it could diffuse around within G1 before
moving back into G3. When PGP and CYP were aligned, it was
unlikely that a drug would reenter G3 close to its exit site
immediately after being pumped out. That likelihood would
decrease further if we had simulated rapid mixing or transit
in G1. The effective role of PGP in the spatial alignment case
was to move DRUGS away from the site of METABOLISM, thus
decreasing ER. For B — A, only METABOLISM decreased
DRUG transport to the receiver space. Alignment, or lack
thereof, had no effect on flux rate. There was, however, an
alignment effect on B — A ER values when CYP-DRUG
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affinity was comparable to or relatively smaller than that for
PGP-DRUG (VI, VII, VIII, XI, XII, XVI). A higher pGp
affinity caused DRUGSs to be pumped out of the CELLs before
they could be metabolized. Those DRUGs had a lower ER
than their counterparts in the control group, for which there
was no alignment.

We did not find any statistically significant evidence of
competitive inhibitory effects by METABOLITES on DRUGS’
transport and METABOLISM. The interaction of pGp with any
substrate used here can be described using simple Michaelis—
Menten kinetics (3). Consequently, for METABOLITES that are
Pgp substrates, inhibition will occur when METABOLITE levels
are large enough. That turned out not to be the case here.
The occasional inhibition that did occur was insignificant. ER
was a contributing factor; those values tended to be small
(< 0.5) for all studies. Furthermore, because all experiments
were conducted under sink conditions, the number of METAB-
OLITES formed was always small relative to the initial amount
of DRUG. More extreme conditions will be needed to explore
METABOLITE inhibition.

Because of the synthetic nature of ISTSs, it was rela-
tively easy, using selective inhibition of dual substrate DRUGS,
to directly measure the separate and combined influences of
PGP and CYP on the fraction of DRUG absorbed (transported).
We observed that by so doing we could get a direct measure
of synergism, which can be difficult to obtain directly from
some other types of models, including in vitro systems. Table
IV lists two cases where significant synergism was observed.
More synergy can be observed given an ISTS with relatively
high densities of PGP and CYP, substrates that have larger
DRUG-PROTEIN affinities, and a longer duration of the ex-
periment (data not shown).

One of our goals is to create extensible, validated ISTSs
that are suitable for the type of experimentation that has
been demonstrated here. We anticipate that such devices will
be useful for exploring and addressing mechanistic questions
and hypotheses that are difficult or impossible to address
using either traditional wetlab or mathematical modeling
methods. To achieve that objective the devices and their
components need to be modular, as are the current ISTSs.
They are purposefully abstract. Only those cellular compo-
nents, features, and functions that were deemed essential to
address the questions of interest were included. Additional
studies are needed that focus on further validation, on a
broad array of potential model uses, and on iteratively
improving the realism of these devices so that they become
more reliable and useful research analogs of transwell and
other in vitro systems.

ISTSs will be helpful in solving scientific problems
related to transport and metabolism in vitro. For example,
Mouly et al. (25) observed that more of a metabolite of
saquinavir (referred to as M7), the first of the HIV protease
inhibitors to reach the market, was produced after baso-
lateral dosing than after apical dosing in a transwell system.
They offer several plausible explanations. Given the modular
nature of ISTSs, it is relatively straightforward to add alter-
native plausible mechanisms into different ISTSs that are
constructed and parameterized to represent saquinavir trans-
port and metabolism. By so doing one can conduct exper-
iments to contrast the influences of the different mechanisms
on B — A and A — B METABOLISM. Because of this com-
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petition between alternative mechanisms, one or more will
survive and be selected based on the ability to generate data
that are most similar to the referent in vitro data. This
mechanistic process refinement and selection will lead to the
design of targeted in vitro experiments to test the selected
mechanisms.

To achieve the above vision it will be necessary to
flexibly adjust the amount of cellular functionality and detail
that an ISTS can represent. Ideally, such detail will be added
only when it is needed to account for specific in vitro obser-
vations. Here are three examples. Additional spaces may be
needed between G1 and G2 to represent an “unstirred water
layer” or to enable simulation of direct interactions between
compounds and the exterior cell membrane components. We
can also anticipate a need to represent two or more different
transporters by including objects similar to PGP within G2 or
G4. For example, objects representing apical uptake trans-
porters, such as peptide uptake transporter 1 (PEPT1) and
organic cation transporter 2 (OCTN2), or additional efflux
transporters, such as multidrug resistant protein 2 (MRP2), a
multiorganic anion transporter, and breast cancer resistance
protein (BCRP) can become G2 components. Objects rep-
resenting basolateral uptake transporters, such as organic
cation transporter 1 (OCT1), and efflux transporters, such as
multidrug related protein 3 (MRP3) and monocarboxylate
transporter 1 (MCT1), can become G4 components. We also
anticipate the need for more realism associated with different
types of metabolism, along with issues of induction and
inhibition. Studies need not be limited to just one DRUG.
Questions related to drug interactions can be explored. Such
additional functionality and detail can be added or removed
without compromising the base ISTS functionality.

To account for a mechanism whereby compounds are
believed to interact with specific subcellular components—
lysosomes, DNA, RNA, etc.—it may be necessary to add new
objects to G3 or replace that space with additional fine-
grained spaces. An object representing CYP3A4 at one G3
location can be replaced by an object acting as a container
(29). The container may, for example, provide a virtual space
occupied by representations of CYP3A4 along with repre-
sentations of other metabolic enzymes, such as the phase I
enzyme, the monoamine oxidase (MAO) superfamily, and
phase II enzymes, the UDP-glucuronosyl transferase (UGT)
superfamily, and members of the sulfotransferase superfam-
ily. Again, because of the modular, synthetic nature of ISTSs,
additions, replacements, and substitutions can be made
relatively easily and without compromising the functionality
built into the other parts of the model. Replacing G3 with
two or more different grids (of the same size) can be done so
that it will not interfere with the functionality elsewhere in
the ISTS; such replacements can be done while a simulation
is running, e.g., to simulate the consequences of some
treatment effect or a therapeutic intervention. After valida-
tion against in vitro data, as was done for alfentanil and
digoxin (3), the ISTS and its components can be used in new
ways. For example, the cellular ISTS component can be
removed for reuse as a module in a larger model. Assume
that we have a physiologically based synthetic model that can
represent gastrointestinal absorption and that it has been
designed so that a connected array of similar modules re-
presents the intestinal epithelium. Copies of a validated ISTS
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module that has compatible interfaces can be plugged into
that array. Following parameterization of the other compo-
nents of the gastrointestinal model, simulations would
anticipate the absorption properties of the compounds for
which the ISTS had been validated.

Flexibility and adaptability are basic characteristics of
biological systems of all types. However, it is challenging to
achieve such characteristics using continuous-state, equation-
based models. That distinction is one of several that make it
attractive to use these types of models to represent and study
biological systems and to aid in making costly wetlab or
clinical experiments more effective. These distinctions are
important. The components of multicompartment absorption
models are mathematical compressions of the phenomena that
they represent. The inductive method on which they are based
explicitly uses the observed phenomena (the data) as its input,
whereas the synthetic method begins with proposed building
blocks and the relations between them (14,15). The inductive
method starts with the phenomena—the amount absorbed
and metabolized after some time, for example—and works
backward to the generators in an attempt to discover an
inverse mapping from range to domain. The synthetic
method, in contrast, works forward from domain (building
blocks) to range (behavior). Its constraints and criteria sit
primarily in the domain.

Induced models are ideally suited for exploiting
discovered characteristics, whereas synthetic models are
ideally suited for exploring the consequences of assembled
components. The inductive model will provide a better fit
to the data and greater precision in extrapolating that data
under the same experimental conditions. The synthetic
model will provide a hypothesis for the mechanisms that
are believed to generate the data. Through its design and
the stochastic nature of its component interactions, it also
provides an important representation of uncertainty. An
inductive model allows one to falsify claims about the data
(relative to a given model). The synthetic model allows one
to falsify claims regarding the mechanisms. The fundamental
difficulty with the synthetic method, as applied here, is
establishing requirements for building an analog that func-
tions acceptably like an intestine, a monolayer of epithelial
cells, or some other system. Synthetic modeling requires
knowledge of the function of the referent, of plausible
mechanisms for that function, and of relevant observables
by which analog and referent will be measured and com-
pared. Today, in pharmaceutical research, those require-
ments can be met. Building the models requires rigorous
methods and attention to detail. However, it is too early in
the development of this new modeling strategy to know
which specific in silico methods and procedures will be most
effective.

In summary, we have provided an example of synthetic
modeling and simulation applied to a pharmaceutically rel-
evant domain: the transport of compounds across complex
cellular barriers that are capable of diverting it, metabolizing
it, and directly responding to it. The ISTSs are analogs of the
CYP3A4-transfected Caco-2 transwell system. Experiments
conducted using them convincingly demonstrate their poten-
tial scientific usefulness and suggest that they could be fur-
ther developed to become stand-alone experimental systems
that, within a research and development environment, will
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complement their in vitro counterparts. We simulated and
explored the combined influences of apical efflux by Pgp and
metabolism by CYP3A4 on transport and ER for series of
virtual compounds having different degrees of overlapping
affinities for Pgp and CYP3A4. We found that for dual
substrates, system-level transport properties were different
with and without the spatial alignment of those components.
In some cases, the efflux and metabolism influences were
simply additive. However, for greater component density and
for longer experiments, significant synergy was observed.
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